Antisense morpholino targeting just upstream from a poly(A) tail junction of maternal mRNA removes the tail and inhibits translation

نویسندگان

  • Tadashi Wada
  • Masatoshi Hara
  • Takuya Taneda
  • Cao Qingfu
  • Ryouhei Takata
  • Kanako Moro
  • Kei Takeda
  • Takeo Kishimoto
  • Hiroshi Handa
چکیده

Gene downregulation by antisense morpholino oligonucleotides (MOs) is achieved by either hybridization around the translation initiation codon or by targeting the splice donor site. In the present study, an antisense MO method is introduced that uses a 25-mer MO against a region at least 40-nt upstream from a poly(A) tail junction in the 3'-untranslated region (UTR) of maternal mRNA. The MO removed the poly(A) tail and blocked zebrafish cdk9 (zcdk9) mRNA translation, showing functional mimicry between miRNA and MO. A PCR-based assay revealed MO-mediated specific poly(A) tail removal of zebrafish mRNAs, including those for cyclin B1, cyclin B2 and tbp. The MO activity targeting cyclins A and B mRNAs was validated in unfertilized starfish oocytes and eggs. The MO removed the elongated poly(A) tail from maternal matured mRNA. This antisense method introduces a new application for the targeted downregulation of maternal mRNAs in animal oocytes, eggs and early embryos.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PDE12 removes mitochondrial RNA poly(A) tails and controls translation in human mitochondria

Polyadenylation of mRNA in human mitochondria is crucial for gene expression and perturbation of poly(A) tail length has been linked to a human neurodegenerative disease. Here we show that 2'-phosphodiesterase (2'-PDE), (hereafter PDE12), is a mitochondrial protein that specifically removes poly(A) extensions from mitochondrial mRNAs both in vitro and in mitochondria of cultured cells. In eukar...

متن کامل

The role of 5'-leader length, secondary structure and PABP concentration on cap and poly(A) tail function during translation in Xenopus oocytes.

The 5'-cap structure and poly(A) tail of eukaryotic mRNAs function synergistically to promote translation initiation through a physical interaction between the proteins that bind to these regulatory elements. In this study, we have examined the effect of leader length and the presence of secondary structure on the translational competence and the function of the cap and poly(A) tail for mRNAs m...

متن کامل

The Role of Cytoplasmic Polyadenylation Element Sequence on Mrna Abundance in Porcine Embryogenesis

Development of a porcine germinal vesicle oocyte (GVO) to a 4-cell stage embryo occurs during a transcriptionally silent period when the oocyte/embryo relies on maternally derived mRNA to encode proteins required for development. Regulation of translation and degradation of maternal mRNA is thought to be partially dependent upon cytoplasmic polyadenylation elements (CPEs) within the 3! untransl...

متن کامل

Oligonucleotides tethered to a short polyguanylic acid stretch are targeted to macrophages: enhanced antiviral activity of a vesicular stomatitis virus-specific antisense oligonucleotide.

The poor membrane permeability of oligonucleotides is one of the major problems of antisense technology. Here we report the construction of designer oligonucleotides for targeted delivery to macrophages. The oligonucleotides tethered to a 10-mer poly(G) sequence at their 3' ends were recognized by scavenger receptors on macrophages and were taken up about 8- to 10-fold as efficiently as those o...

متن کامل

Nanos and pumilio establish embryonic polarity in Drosophila by promoting posterior deadenylation of hunchback mRNA.

Nanos protein promotes abdominal structures in Drosophila embryos by repressing the translation of maternal hunchback mRNA in the posterior. To study the mechanism of nanos-mediated translational repression, we first examined the mechanism by which maternal hunchback mRNA is translationally activated. In the absence of nanos activity, the poly(A) tail of hunchback mRNA is elongated concomitant ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 40  شماره 

صفحات  -

تاریخ انتشار 2012